## Hybridization of β-Adrenergic Agonists and Antagonists Confers G Protein Bias

Maximilian F. Schmidt<sup>1,3</sup>, Markus Stanek<sup>1</sup>, Jonas M. Kaindl<sup>1,3</sup>, Louis-Philippe Picard<sup>2</sup>, Harald Hübner<sup>1</sup>, Dorothée Weikert<sup>1</sup>, Michel Bouvier<sup>2</sup> and Peter Gmeiner<sup>1</sup>

<sup>1</sup>Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.

<sup>2</sup>Institute for Research in Immunology and Cancer (IRIC), Biochemistry and Molecular Medicine, University of Montréal, Québec H3C 3J7, Canada.

<sup>3</sup>Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University, Nägelsbachstraße 25, 91052 Erlangen, Germany.

Starting from the  $\beta$ -adrenoceptor agonist isoprenaline and beta-blocker carvedilol, different chemotypes of agonist/antagonist hybrids were synthesized.

Investigations of ligand-mediated receptor activation revealed a predominant effect of the aromatic head group on the intrinsic activity of our ligands, whereas ligands with a carvedilol head group were devoid of agonistic activity.

Ligands composed of a catechol head group and an antagonist-like oxypropylene spacer possess significant intrinsic activity for the activation of  $G\alpha_s$ , while only showing weak or even no  $\beta$ -arrestin-2 recruitment at both  $\beta_1$ - and  $\beta_2$ -AR.

Unbiased MD simulations were performed to elucidate the binding mode of compound (S)-22 in comparison to the full agonist epinephrine and the partial agonist salmeterol at the  $\beta_2$ -AR.

Thereby we gained insights into the origins of the functionally selective partial agonist activity for this type of catechol-beta blocker hybrid compounds.

Markus Stanek, Louis-Philippe Picard, Maximilian F. Schmidt, Jonas M. Kaindl, Harald Hübner, Michel Bouvier, Dorothée Weikert, Peter Gmeiner:

Hybridization of  $\beta$ -Adrenergic Agonists and Antagonists Confers G Protein Bias. *Journal of Medicinal Chemistry*, **2019**, 62, 5111-5131.

DOI: 10.1021/acs.jmedchem.9b00349

